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In this paper we review the basic mathematical properties that allow the 
embedding of quantum state spaces into spaces of classical probability mea- 
sures. In particular, the precise topological structures used for these immersions 
are described. 

1. I N T R O D U C T I O N  

The aim of  this paper  is to state in a precise and rigorous way the 
mathematical  properties that allow the classical embeddings of  quantum 
mechanical state spaces. By a classical embedding of  a quantum mechanical 
state space we mean here the representation of quantum mechanical states 
as (classical) probabili ty measures. 

The motivation for such an investigation is due to some open prob- 
lems in the mathematical  and physical foundations of  quantum mechanics: 
in particular, the quantum measurement problem suggests the possibility 
that some classical behavior of  macroscopic systems could be understood 
in terms of  quantum mechanics. In general, it is an open problem to 
understand the transition to the classical behavior of  a quantum physical 
system. The theory reviewed in this paper can be a proper f ramework for 
these problems. 

In this review we shall only deal with the mathematical  aspects: we 
shall state precisely the definitions and their consequences; as a rule, the 
proofs will be omitted and referred to the existing literature. 

The paper  is organized as follows: in Section 2 we define the spaces of  
quantum states and classical (probability) measures and introduce their 
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topologies. In Section 3 we describe the representation induced by a POV 
measure. In Section 4 we review the representation given by the Kadison 
map and its dual. 

2. QUANTUM AND CLASSICAL STATE SPACES 

To each quantum system a (complex, separable) Hilbert space H is 
associated; B(H) denotes the space continuous operators on H, and B1 (H) 
the subspace of trace-class operators on H [for the basic theory of 
operators in Hilbert spaces and, in particular, for the properties of trace- 
class operators we refer to the book of Reed and Simon (1980)]. The states 
of the quantum system are identified with positive trace-class operators of 
trace one; then S(H), the set of states of the quantum system associated to 
the Hilbert space H, is 

S(H) = {T~BI(H): T > O, Tr(T) = 1} 

Of course, the very definition of S(H) suggests that it is natural to 
consider it as a subset of B1 (H). Nevertheless, there is at least another 
useful and natural point of view. Each element of S(H) defines a norm- 
bounded linear form on B(H), 

A ~-~ Tr(TA), T~S(H), A ~B(H) 

Hence S(H) can be considered as a subset of the dual of B(H) (viewed as 
a Banach space with respect to the operator norm). The former point of 
view is the one that will be used for the embedding considered in Section 
3; the latter will be considered for the construction of the Kadison map in 
Section 4. 

B~ (H) is a Banach space with respect to the trace-norm, defined as 

II rll,,= Tr(ITI), T~B, (H) 

S(H), as a subset of the Banach space B~ (H), has the following properties: 
1. S(H) is a convex set; that is, if 0 < w < 1 and /'1, T=~S(H), then 

wy~ + ( 1  - w)r2es(n) 

2. The set of its extreme points, Ex(S(H)), is 

Ex(S(H)) = {T~S(H): T = e[x], x~H} 

(where the operator P[x] is defined by P[x]y = (x,y)x, YyeH); in view of 
this characterization the elements of Ex(S(H)) are called vector states, and 
Ex(S(H)) will be denoted also by V(H). 

3. S(H) is a closed subset of B1 (H). 
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4. S(H) is a a-convex subset of B~ (H) in the following precise sense: 
let (w~);_>~ be a sequence of numbers such that 0 < w~ < 1, Vi, and 

ov W ~i= ~ i 1 (such a sequence will be called in the sequel a sequence of 
weights) and (T;)i>_ 1 be a sequence of elements of S(H); then the series 
~g~ : w~Ti is convergent, in the sense of the trace-norm, to an element of 
S ( H ) .  

5. From the spectral theorem for the compact operators it follows that 

co(V(H)) = a - co(V(H)) = co(V(H)) = S ( H )  (1) 

[where co(V(H)) denotes the convex hull of the set V(H) and co(V(H)) the 
closed (with respect to the trace-norm) convex hull of V(H)]. 

Let us turn to the second possible point of view. B(H)* denotes the 
topological dual of the Banach space B(H) (endowed with the operator 
norm); B(H)* is in a natural way a Banach space. We denote 

S(B(H)) = {a ~B(H)*: co(A) -> 0, VA > 0; ~(/) = l} 

The elements of S(B(H)) are called states on B(H). Obviously S(B(H)) is 
a convex subset of B(H)*, and Ex(S(B(H))) denotes the set of its extreme 
points. 

There is a natural inclusion of S(H) in B(H)*, and this inclusion is 
continuous [if S(H) is endowed with the trace-norm]. Hence we have the 
topological immersion 

S ( H )  r 8 ( ~ ) *  

This means, in particular, that the a-convex structure of S(H) is preserved. 
Various subsets of S(H) can be characterized via this embedding: 
1. co(V(H)) is the subset of elements of S(B(H)) that are continuous 

with respect to the weak (equivalently, strong) operator topology of B(H) 
(Takesaki, 1989). 

2. S(H) = a -  co(V(H)) is the subset of elements of B(H)* that are 
continuous with respect to the ultraweak (equivalently, ultrastrong) opera- 
tor topology of B(H) (Takesaki, 1989). 

3. The closure of co(V(H)) in the norm-topology of B(H)* [denoted 
co(V(H)) B(m*] is S(H) itself; hence 

co(V(H)) c a - co(V(H)) = co(V(H)) n(H)" = S(H) (2) 

[compare this with condition (1)]. 

B(H)* can be endowed with its weak-* topology, as dual of B(H): this 
topology is defined by the separating family of seminorms on B(H)*, 

B(/4) ~ ~ I~(A)J, A ~B(H)  
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It is coarser than the norm one, and has the following properties: 
1. The unit ball of B(H)* is compact in the weak-* topology (theorem 

of Banach-Alaoglu). 
2. S(B(H)) is weak-* compact as a closed subset of a compact set. 
3. The following density property holds: 

c o ( V ( H ) )  weak-* ~--- S(B(H)) (3) 

[compare with conditions (1) and (2)]; a proof of this important result can 
be found in Emch (1972). 

4. Moreover, 

Ex(S(B(H))) c V(H) weak-" (4) 

We shall use later this fundamental result in the construction of the 
Kadison map; for its proof see Emch (1972). 

denotes a compact (metrizable), topological space, ~ ( ~ )  the a-alge- 
bra of Borel sets of f*, and M(f~) the complex vector space of Borel 
complex measures on f2 (necessarily regular and bounded). M(f2) is a 
Banach space with respect to the total variation norm 

Ilitll:=litl( ), It eM(f~) 

We recall that the total variation [itl of an element It of M(f~) can be 
characterized as the smallest of the positive measures v in M(f~) for which 

lit(x) I -< v(X), vxe ( ) 
[for basic facts on measure theory on topological spaces we refer to Rudin 
(1973)]. 

S(f2) denotes the subset of M(f~) defined by 

S(f~) = {it ~M(D): It > O, It(f~) = 1} 

Its elements of S(fl) are the classical states (probability measures) on ~. It 
is a convex subset of M(~) ;  the set of its extreme elements, Ex(S(~)), 
coincides with the set of Dirac measures at the points of ft. S(f~) is 
a-convex in the following precise sense: if (wi)i ~ l is a sequence of weights 
and (iti)i_> t is a sequence of elements of S(f~), then the series ~ =  lw,-it,- 
converges, in the norm of M(f~), to an element of S(f~). 

M(f~) can be identified with the dual of the Banach space C(f~) of 
continuous functions on f~ with the sup norm; this identification is pro- 
vided by the formula 

= ~fd i t ,  I t e i (~ ) ,  It(f)  f~C(~)  
J. 
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We consider on M(f~) its weak-* topology as dual of  C(f~); it is called the 
vague topology and it is defined by the separating family of seminorms 

M(n)  ~p ~,  l#(f)] ,  f~C(~)  

This topology is coarser than the norm one. 
For S(H) the following properties hold: 
1. S(fl) is vaguely closed in M(Y0; since the unit ball of  M ( f 0  is 

compact in the weak-* topology (Banach-Alaoglu theorem), S(fl) is 
compact, as closed subset of a compact set. 

2. The vague closure of co(Ex(S(f0)) coincides with S(f2) and we 
have the situation 

co(Ex(S(fl))) c a - co(Ex(S(fl))) c co(Ex(S(fl))) vagu~ = S(fl) 

[compare with conditions (1)-(3)]. 

3. EMBEDDING OF S(H) VIA A POV MEASURE 

Let f2 be a compact (metfizable) space; we fix a POV measure E on f~; 
E is a mapping from M(f~) to the set of positive elements of B(H) such that 

1. E ( ~ ) = 0 ,  E ( n ) = I .  
2. I f  (X,)i ~ 1 is a disjoint sequence of  elements of  B(fl), 

i i i = l  

[where the series on the right-hand side has to be understood in the weak 
(equivalently, strong) operator topology of B(H)]. 

Among POV measures we also consider PV measures, which are 
defined as those POV measures for which E(X) is a projection for all 
x ~ ( n ) .  

If  T~Bi(H), we define 

pr(X) := Tr(TE(X)), V X ~ ( f l )  

Then # r e M ( ~ ) ;  in fact, the trace has the property that, for any sequence 
(Ai)i~ ~ of elements of B(H), converging weakly to A~B(H), Tr(TA) = 
tim Tr(TA~); using this property and property (2) of  the definition of  a 
POV measure, one can easily prove that # r  is indeed an element of  M(fl). 

In this way, a map is defined 

T ~ #r(B1 (H) ~ M(f~)) 
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Its properties are: 
1. It is linear. 
2. It maps self-adjoint elements of B1 (H) to real measures and positive 

elements of Bt (H) to positive measures; moreover, 

#r ~S(f~) if T ~ S ( H )  

3. If T~Bt  (H) is self-adjoint, then 

IfTI-< fl~ 
In fact, #r is a real measure and we have the decompositions (Rudin, 1973) 

f ~ = f ~ - ~ ,  I f ~ l = f  + + f ~  

where f +, # r are positive measures, minimal with respect to the possible 
decompositions 

# T  = ~"1 - -  112 (VI,  v2 positive measures) 

On the other hand, T can be decomposed as 

T = T + - T  - ,  I T I = T + + T -  

where T +, T-  are positive operators; then, by the linearity of (T ~/~T), 

f T  = f T  + - -  f T -  

By the minimality property 

#~ < #r+, 

hence 

# T  ~ f T - -  

] f T [  = # +  + f i T  ~- f T  + "JI-#T-- = f T +  + T - -~' f l  7] 

4. For any T E B I ( H )  we have the inequality 

lift II-< 211TH, 

In fact, each TEB~(H) can be decomposed as 

T + T* T -  T* 
T - - -  + i - -  =, TI + iT2 

2 2i 

where T1, T2 are self-adjoint elements of Bl(H); hence, by the previous 
item, 

IfTI-< IfTll + IfT21-< fLT,I + fiT21 
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Then 

+ liT*IlL) = I lz l t ,  
T + T *  1 

, - (It  11, 
< 

and similarly for/~lr21; we get in conclusion 

II T It-< 211zll  
5. The previous inequality shows that the mapping (T ~ / ~ r )  is con- 

tinuous from B~ (H) to M(f~), with the respective norms. 
6. (T~--~l~r) is continuous from B1(H) to M(f~), with the vague 

topology. 
7. T ~ I~r(S(H) ~ S(f~)) preserves the a-convex combinations. 
8. Since S(H)  is a closed subset of B~ (H) and S(O) is a closed subset 

of M(~) (with respect to the total variation norm and, hence, also to the 
vague topology), the restriction of (T ~ Pr) to S(H)  is continuous from 
S(H)  to S(•), the latter considered either with the total variation norm or 
the vague topology. 

In this way we have set up a continuous, a-convex map between the 
quantum and classical state spaces. It turns out that this mapping has 
many interesting features: for example, the spectral properties of a self-ad- 
joint operator whose spectral measure is E can be characterized in terms of 
the properties of the map (T ~ #r)  that E induces (Cassinelli and Lahti, 
n.d.). Here we are interested only in the possibility of an embedding of 
S(H) into S(f~) via this map; hence we discuss only its injectivity and 
surjectivity; a complete discussion of its properties can be found in Bugajski 
et al. (n.d.). 

The following properties hold for (T ~-~ #r):  
1. If E is a PV measure, then (T ~ #r)  is never injective; in fact, let 

x ~ H  be any unit vector and X ~ ( f l ) ,  and define 

y ".= em(X)x; T1 ,= P[x], T2 ".= P[y] 

Then 

~ T  1 ~ /~T2 

but T~ ~ T2, unless x is an eigenvector of E(X).  
2. In case E is a PV measure, ( T ~  #r )  can be surjective; this is 

exactly when the spectrum of the self-adjoint operator corresponding to E 
by the spectral theorem contains only eigenvalues. 

3. There are examples of POV measures such that the mappings 
(T ~ / t T )  they induce are injective; we refer for these examples to Bugajski 
et aL (n.d.) and references therein. 
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4. Exactly the POV measures that induce injective mappings cannot 
induce surjective mappings; hence injectivity and surjectivity exclude them- 
selves mutually. 

The case of injective mappings (T~--~T) can be used to construct 
classical representations of quantum state spaces. The POV measures that 
induce injective mappings are sometimes called informationally complete 
observables. 

4. THE KADISON  M A P  AND ITS DUAL 

We denote by f~ the weak-* closure in B(H)* of the set Ex(S(B(H))): 

f~ = Ex(S(B(H)))weak-" 

f~ is compact as a closed subset of a compact set [the unit ball of B(H)*]. 
The inclusion V(H) c f~ holds and also [compare (4)] 

Ex(S(B(H))) ~ V(H) weak'" 

Hence 

V(H) weak-* = n 

This shows that ~ is a natural compactification of V(H); the topology 
of f~ [which is the restriction to ~ of the weak-* topology of B(H)*] when 
restricted to V(H) coincides with the restriction to V(H) of the topology of 
the trace norm; then f~ is metrizable. 

For all A e B(H) we define 

fA(f~-o C) 

by 

fA (~o) ,= o~(A), o e 

fA is a continuous function on ~; in fact, for all ~o0e~ and each e > 0 the 
set 

N,(wo) = {co ef~: lea(A) - ~oo(A)[ < e, VA eB(H)} 

is a neighborhood of Wo (in the topology of t2), if o~eN~(a)o), then 

I o(A) -  oo(A)l < E 

Hence 

VA( o) -L( Oo)L < 

This shows that fa  is continuous. 



Classical Embeddings of QNI State Spaces 

We define a mapping 

D(B(H) ~ C(n))  

by 

2331 

D(A) '=)CA 

The properties of D are the following 
1. D is linear. 
2. If  A is self-adjoint, then D is isometric; in fact 

I[D(A) ]I ~ - sup{ [D(A)(co)[: co ~ ~} 

= sup{Ico(A)l: co ~f~} 

= sup{Ico(A)[: co 6 V(H)} 

= sup{f (x ,  A )p: x flxll = l )  

= flA II 

3. D is continuous from B(H) to C(~);  in fact, each element A of B(H) 
can be decomposed as 

A + A* A - A *  
A = ~- i --'A1 + iA2 

2 2i 

where A~, A2 are self-adjoint; then 

D(A) = D(A, ) + iD(A2) 

HD(A)[I~ < [ [n ( / l )  [leo + HD(A2)[I~ 

= liil [i + IIAz[I 

<<- 2IIA ll 

4. D maps self-adjoint elements of B(H) to real measures and positive 
elements to positive measures. 

5. If (A,), > a is an increasing, uniformly bounded sequence of ele- 
ments of  B(H) that (necessarily) converges weakly to an element A of  
B(H),  then 

D(A,)  ~ D(A) in C(f~) (that is, uniformly) 

In fact, from the weak convergence A, ~ A we get that 

D(A.)(co) ~ D(A)(co), Vco ~ V(H) 

Since V(H) is dense in ~, it is easy to see that 

D(A.)(co) --+ D(A)(co), Vco ~ 
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In conclusion, D(A.)~D(A) pointwise, (D(A.)). ~ 1 is increasing in C(I'~), 
and D(A) is continuous; hence D(A.) ~ D(A) uniformly, by Dini's theorem. 

6. From the previous point and the defining properties of a POV 
measure, we get that, if E is a POV measure on some Borel space 
(F, ~(F)) ,  then D o E is a CR(f~)-valued measure on the Borel space 
(r, ~(r)). 

In the sequel we consider the restriction of D to the real Banach space 
Bh(H) of self-adjoint elements of B(H); denoting D (by a slight abuse of 
notation) this restriction, we have that 

D(Bh (H) ~ CR (~)) 

is a positive isometry. Consider the dual D* of this map: 

D*(CR (f~) * ~ Bh (H)*) 

Since f~ is a compact (metrizable) space, CR(f~)* is canonically iden- 
tified with the real Banach space MR(r )  of real Borel measures (necessarily 
regular and bounded) on fL The general properties of the dual of a linear 
map between Banach spaces assure that D* has the following properties: 

1. Since D is an isometry, D* is surjective from MR(f~) to Bh(H)* and 
the kernel of D* is given by 

{/~ e CR(f~): p ( f )  = 0 for all f in the range of D} 

2. Since D* is surjective, each ~o~Bh(H)* can be written as 

co = D*(#) 

where /~ is some (not uniquely determined) Borel measure on f~; in 
particular, each P[x]~V(H) can be written as P[x] =D*(#) ;  then the 
definition of dual map implies that 

(x, Ax) = D*(#(A)) 

= p(D(A)) 

.In D(A)(oJ) dtt(r 

= .f~L(o~) d~(o~) 
This formula provides a classical representation of the state P[x]: the mean 
value of each observable A in the state P[x] is given by the integral of a 
(continuous) function over the "phase space" ~. 

3. Obviously, the measure p, such that o~ =D*(#),  is not uniquely 
determined, since D* is not injective. 
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